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Growth of Cayley and diluted Cayley trees with two kinds
of entities
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SUPRAS, Institut de Physique B5, Univetside Lege, Sart Tilman, B-4000 kge, Belgium
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Abstract. A kinetic growth model derived from the magnetic Eden model is introduced in order

to simulate the growth of hierarchical structures, such as Cayley trees. We only consider the case
where two kinds of entities are competing with each other and can be further subjected to an
external field. The very relevant case in which both kinds of entities have different coordination
numbers is introduced here for the first time, and is called the diluted Cayley tree. Physical and
geometrical properties of the finite and infinite trees are exactly found and simulated. Finite-size
effects are emphasized and illustrated on the global or local magnetization and on the chemical
activity. Asymptotic limits are given in each case. The generated patterns can be related to a
correlated percolation problem briefly discussed in the appendix.

1. Introduction

During the last decade, kinetic growth models have received much attention because of
the natural forms and shapes that their non-equilibrium processes develop [1]. Thus, these
models have possible applications in areas of science such as percolation [2], fracture [3]
or crystal growth [4]. The most simple far from equilibrium growth model is that of Eden
[5] which has led to several variants such as, for example, the ‘Eden model A’ [6]. In this
model, the growth starts from a single particle called the ‘seed’ placed on an arbitrary lattice
site. The growth process consists in selectively sticking a particle on an unoccupied lattice
site in the immediate neighbourhood (the ‘perimeter’) of the cluster. This rule simulates,
for example, the growth of bacteria cell colonies [5-7] and leads to compact clusters filling
the Euclidian space. Variants of this simple rule were introduced to simulate, for example,
sedimentation [8] or directed polymers [9]. Although the process is apparently simple, it is
not yet fully understood [1-9].

Yet the Eden model and its present generalizations are too restrictive, because it is
limited to the growth of a single species. However, natural systems can, by contrast,
present different states. For example, biological entities like bacteria cells, for which the
Eden model was constructed, can in fact present an extra degree of freedom, for example
some gene o$almonellacan be ‘on’ or ‘off’ [10].

Thus it is of interest to generalize the kinetic one-species growth models. In statistical
physics, one simple way of representing a set of species is through a magnetic analogy, i.e.
through a ‘spin’ taking a certain set of values. In previous works, we have added the notion
of spin to the well known Eden [11] and DLA [12,13] models. These ‘generalized’ or
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‘magnetic’ kinetic growth models directly open many paths of investigation in (statistical)
physics [11-13].

The aim of this paper is to present and solve such a magnetic-like growth on a Cayley
tree (or Bethe lattice) and to discuss the physical and geometrical properties of the generated
trees. Moreover, we will consider that both kinds of physical entities are geometrically
different: both entities can, for example, have different but fixed branching coordination
numbers. This ‘condition’ generates what we ddilluted Cayley tregsapparently not
examined up to now. From a more positive point of view, one can consider that the tree
could evolve with multiple branching. This more general case of tree growth is discussed
and is exactly solved here. Another generalization could consider a random value of the
branching parameter at each growth step.

Such multi-species growths on hierarchical structures are not so marginal as might be
thought at first: for example, bacteria cell colonies [10], dendrimers [14] and demographic
problems [15] are addressed. The aim of this paper is not to pursue an exhaustive
list of possible experimental relevant cases, but rather to develop statistical mechanics
investigations on a new model and see whether interesting findings exist. The models
presented here are clearly of theoretical interest because they can be connected to a correlated
percolation which is a standard subject of investigation. A brief discussion of the correlated
percolation problem on a Cayley tree is given in an appendix.

Furthermore, mathematical theory and formal examples of simple branching processes
can be found in [15]. We will keep the ‘magnetic picture and vocabulary’ throughout the
text because it is more traditional for Cayley trees.

In section 2, the Cayley tree model with fixed branching is presented and an exact
solution is given for physical and geometrical quantities. These exact results are compared
to simulation data. In section 3, we discuss the second model which generates diluted
Cayley trees. Some conclusions are drawn in section 4. New interesting features are
outlined, allowing for some thought as possible parameter control applications.

2. Growth of magnetic Cayley trees

2.1. The growth model

We recall first that a Cayley tree is a hierarchical lattice without loops with an asymptotically
infinite dimension. Cayley trees are generated as follows. From a centrat &itanches
of unit length grow. The end of each branch is another growth site. At this step, a shell is
formed by thez new sites; from each site of the first shell- 1 branches then grow out:
the second shell is defined by the newly formed sites and this new shell coptainsl)
sites. The process is then repeated. The parametecalled the coordination number of
the lattice. Forz; = 2, the tree reduces to a one-dimensional chain. Figuagshows three
shells of a Cayley tree with a coordination numbhes 3.

Consider now the growth of a Cayley tree when two possible Iskhg %)-Iike types
of entities can be deposited on the growth sites. Initially, a spifup or down) is dropped
on the central site of the Cayley tree. It is the initiator of the growth and is also called
the seed of the growth. Spins are then glued to each site of the first shell according to an
a priori rule: the probabilities to glue an up-spin or to glue a down-spin are given by the
Boltzmann factor exp- BAE) of the local gain of energy E resulting from the addition
of either type of spin. On each site, both probabilities are renormalized in the interval [0,1]
over both up or down directions of the new spin. For eadite of the first shell, a random
number generator chooses a spin species with respect to the calculated probabilities. The
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(a) (b)

Figure 1. (a) Cayley tree of the third generation grown with= 3. (b) Typical magnetic Cayley
tree withz = 3 obtained by the model defined in section 2. Full and open circles represent up-
and down-spins, respectively.

spins are frozen for ever and define a new spin-free perimeter, i.e. the set of empty sites in
contact with the tree. This set forms the next shell, on which growth can take place in the
same way. The process is repeated as mary tases.

The total energyE of a magnetic tree is obviously given by

E:—%ZO’,‘O’_,‘—HZO’,‘ (21)
(i.J) i

where the first summation occurs on the nearest-neighbour spins only. The first term
describes a short-range interaction with couplihbetween nearest-neighbour ‘spins’. For
a positive coupling, spins of the same species tend to aggregate in the tree while for a
negative coupling, they tend to alternate. The second term in (2.1) defines a dimensionless
field-like quantity for the orientation of the spins as if a ‘magnetic field’ is applied. The
potential BH can indeed represent at first an external magnetic field, but can also be a
chemical potential, a pressure field, etc. Althoughnd H are energies, the process is only
of kinetic and geometric origin because the growth is driven by the probabilitie® éxp
and expgBH), as we will see more explicitly below (section 2.2).

Such a process can be easily computed. Figusg sifows a typical ‘magnetic’ Cayley
tree with three shells, a tree which has grown from an up-spin as seed. Up- and down-spins
are represented by full and open circles, respectively.

Here, at each generation, the growth occurs on all sites of the perimeter. Thus the
kinetic growth model described above is @otropic variant of the magnetic Eden model
[11] which was built on a square lattice. Inclusion of a degree of freedom modelled by a
spin permits one to study the distribution of ‘spins’ in the generated patterns, and therefore
allows one to introduce physical quantities of interest, such as ‘magnetization’, and finally
to merge a geometric model into a physical model and vice versa. Other physical quantities,
such as correlation functions, susceptibility etc, are not studied here, but could receive some
attention as well.
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2.2. Physical and geometrical properties of the growing trees

At the gth generation of the tree,(z — 1)¢~ spins are glued on the — 1)th shell. The
whole tree contains a ‘masS'(g) of spins given by
— 8 _
Sy = G- DI=2 2.2)
z—2

The shell of thegth generation contains a numb@f(g) of sites. For such trees,
N(g) = z(z — 1)¢~* grows exponentially wittg and is only dependent an N(g) is also
the number of paths that a self-avoiding random walker can follow to reach the external
shell or the surface sites.

The tree may also be considered as a collection(pf- 1)¢~! independent semi-open
chains starting from the central site. The stochastic growth is similar to that used in the
magnetic Eden model first studied on a square lattice [11]. For a one dimensional semi-open
chain, it can be found that the probabilistic averageof a spin at a distancg from the
seedoy is exactly given by

1- B¢
%=A<1_3>+003g (2.3)

where the variabled and B are given by

_ tanh(pJ + BH) —tanh(BJ — BH)
N 2

A (2.48)

and

B_ tanh(8J + BH) +tanh(8J — BH)
= 3 .
The magnetic (spin) analogy allows us to define physical quantities. glidieal
‘magnetization’M of a tree ofg shells is defined as the difference between the number of
up- and down-spins normalized by the tree mé&gg). The magnetizatiorM is also the
normalized summation af; over all successive shellg/ for a finite tree is given by

1 8 .
M= -1 ’—1,-). 2.5
S(g)("“;“Z e (@5)

Inserting equations (2.2) and (2.3) into equation (2.5), we obtain

- =2 A (=Df-1 1—((z— DB A
M_(Z(Z—1>g—2)[00+1—3< i -2 )+ZB<1_(Z_1)B><0°_1B>}'
(2.6)

It is clear that this magnetization is not the equilibrium magnetization defined by the
extremum of the free energy with respect to the fiéld Here the magnetization does
not minimize the free energy. The result of equation (2.6) holds for a non-equilibrium or
‘quenched’ system and is different from the mere annealed finite-size Ising case [16, 17].

In the presence of an external field, tends asymptotically ta /(1 — B) independently
of op andz. Figure 2 shows this asymptotic (fgr — +o00) behaviour ofM in the plane
(BJ, BH). The magnetizatiol is asymptotically finite foB H # 0 and is only controlled
by the sign of the field. Without the fiel(B H = 0), one should note that the asymptotic
magnetizationV tends to zero for all finite coupling values. One can notice an intermediate
plateau around zero in the antiferromagnetic part of(fhé B H) plane of figure 2. In this
region (i.e. forBH < BJ), the antiferromagnetic coupling dominates the field and alternating
configurations of spins are favoured, leading to a global zero magnetizatign-for-oco.

(2.40)
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Figure 2. Asymptotic behaviour of the global magnetization of
magnetic Cayley trees in th@J, BH) plane.

The local magnetizationu(g) of the gth shell is defined by the difference between the
numberN™* of up- and the numbeN~ of down-spins in thegth shell normalized by the
massz(z — 1)¢~1 of this shell. In the magnetic Cayley treg(g) = o, wherea, is given
by equation (2.3). It is worth pointing out that(g) tends asymptotically tad/(1 — B)

(which is the quantity just discussed above) for finité and 8 H values.

One should also remark that in kinetic growth models, when the geometry is intimately
related to the physical growth process, interesting behaviours are generally found. This
was the case, for example, of DLA or invasion percolation, in which fractal structures can
be found [1,13]. Here, the generated patterns are non-fractal by the definition of a tree
(see section 2.1) but if we pay attention to the respective distribution of the spin species
in the tree (see the appendix), filamentary clusters of spins are found for well-defined
paramete8J, BH) values. This suggests that the internal structures of such trees are also
interesting. The scope of this paper is, however, restricted to solving the global and surface
spin composition of the trees.

2.3. Finite-size effect of trees grown in the presence of an external field

One is often interested in finite-size systems. Indeed, one should note that natural and
physico-chemical systems have a finite size and only contain a few entities. Even though
they are macroscopic systems, bacteria cell colonies contain no more than 10000 cells
[10]. Dendrimers, related macromolecules and nanocrystals are usually made of no more
than ten generations or shells [14]. Therefore, it is useful to stress the size effect of the
present growth model. This is done by comparing values for small trees §nitéth the
asymptotic values (figure 2).
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Figure 3. (a) Global magnetizatiord of small-size Cayley trees (fifth generation) with= 3
grown from an up-spin as seed in theJ, BH) plane. b) Surface magnetization(5) of the
same trees.
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Figure 4. Global magnetizatio/ as a function of8J for Cayley treeqz = 3) grown without
external field from an up-spin as seed. Different stages of the growth are dlgowr, 5, 6).
One should note the varying sign #f with g at fixed coupling.

Figure 3&) shows the magnetizatiod/ in the (8J, BH) plane of small trees
(z =3,¢g =5) grown from an up-spin as seed. One should note Mais non-zero in
the antiferromagnetic part of the diagram. In fact, introducing 3, g =5 andgJ = —
into equation (2.6), we find tha = —g—ﬁ ~ —0.3404 for anyBH value. Moreover, it
should be stressed that (i) in this/ < O part of the diagram) is a damped oscillating
function of the size parametgrand converging towards zero (see equation (2.6)), and (ii)
the amplitude of these oscillations isdependent. This damped oscillating behaviour is
illustrated in figure 4 for the particular cagdd = 0 (see the next subsection).

In the ferromagnetic part of thesJ, BH) plane, another finite-size effect is seen in
the negative field region. It is essentiallysaed effect For a tree having grown from an
up-spin, a strong coupling leads to all the spins being ordered in the same spin direction
as that of the seed via nearest-neighbour interactions. When the field is dominated by the
coupling, the sign of the global magnetizatibhis controlled by the seed sign, even though
the field has a different sign.

Figure 3b) shows the fifth shell local magnetizatipi(5) of the same tree as those used
for the globalM magnetization shown in figure & Similar finite-size (oscillation and
seed) effects occusut are z-independents seen in equation (2.3). The spin composition
of the external shell is thus strongly dependent on the initial seeldthe generatiory of
the tree. In this sense, there are ‘intrinsic finite-size effects’. Within this set of parameters,
the global distribution of spin species is tunable. This opens new interesting prospects in
various sciences.

2.4. Small trees grown in the absence of an external field

The variableA, defined in equation (2.2), characterizes the field effdcreduces to zero
without field and equation (2.6) then reduces to

(z — 2)oo 1-((z—-1 tant(ﬂj))gﬂ
= . (2.7)
(zz—=D¢ -2 1—(z —1)tanhBJ)

The zero-field case occurs when the growth process is controlled only by the local
interactions.

[1+ztanr(ﬁj)<
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Figure 4 shows the total magnetizatioh as a function ofgJ for a finite Cayley tree
(z = 3) grown without field from an up-spin as seed at different stages in its growth:
g = 3,4 and 5 (with mass = 22, 46 and 766, respectively).

As similarly observed in the two-dimensional magnetic Eden model [18], the
magnetization presents a smooth size-dependent ‘transition’ from 0 to 1 when the coupling
BJ > 0 is increased from O to a high value. As discussed in section 2.3, this transition
is here also due to aeed memory effectOne should note (but it is not shown) that if
the seed is ‘down’M tends to—1 at large ferromagnetic coupling values because of the
factor oy appearing in equation (2.7). This means that above a sufficiently adequate (or
‘critical’) coupling value, the spin species of the seed itself dominates the other species.
One can define the critical coupling valy®/; as the inflexion point of the curve
by analogy with values derived from mean-field approximations in statistical mechanics.
Taking the second derivative of equation (2.7) set to zero, one finds the gdluevhich
diverges logarithmically withg. From equation (2.2), a variable changéS) leads to
BJ:. ~ In(In(S)). Thus, for large trees, a very large value &f is needed to obtain a
non-zero magnetization for the system. This is in contrast to the behaviour observed in the
MEM on the square lattice [18], where the critical value was found to grow logarithmically
with the number of spins, i.8J; ~ In(S).

In the absence of an external field, the competition between the two species in the
finite-size Cayley tree is thus strictly controlled by the segdand the generation of the
tree. Finally, notice thag > 1 and for large coupling values{/(g) has the following
behaviour:

M ~ og(tanh(BJ))s+2. (2.8)

For large positive coupling values, the dynamical behavioud@$) is thus simply given
by an exponential depending on the numpeof generations. One should also note that
the same exponential behaviour f@tg) can be found from equation (2.2).
In the antiferromagnetic pa(BJ < 0), a slow oscillating convergence #f (g) towards
zero can also be seen. The discussion of the latter observation is identical to the one already
made in section 2.3. The effect of the parity ©ofs also clearly seen here.

2.5. Simulations of Cayley trees

The global magnetization of the resulting trees up to five shells growthout fieldand

from an up-spin as seed is shown in figure 5. Each symbol represents the average of the
magnetization over 100 simulated Cayley trees. Different coordination humbers have been
used:z = 3,4 and 5 for respectively square, triangle and circle symbols in figure 5. The
full curves represent the theoretical curve given by equation (2.7). The global magnetization
M of the simulated trees fits perfectly the theoretical curves.

3. Diluted Cayley trees

3.1. The growth model

In many cases, the examined species can have different ‘coordination numbers’ according
to their state. Hence different coordination numbetsand z~ for example, for a two

state system, can be introduced. The tatalshould be strongly dependent on these
parameters. Surprisingly, such an apparently simple tree model has not yet been studied
to our knowledge. An example of multi-species growth is the evolution (catalysis) or
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Figure 5. Global magnetization of small Cayley treegg = 5) grown from an up-spin as
seed. Different coordination numbers are used. The measuremettsacd averaged over 100
simulated trees; curves are theoretical values from equation (2.7).

Figure 6. Typical magnetic diluted Cayley tree grown fof = 3 andz~ = 2 up to the third
generation. Full and open circles represent up- and down-spins, respectively.

reproduction (biological) processes where different filiation types can occur depending on
the physical state of the entities.

The magnetic diluted Cayley tree model is introduced here for taking into account such
a multi-species growth as an extension of the magnetic Cayley tree model (section 2). At
each generation of the growth, from each up-spin, we assumezthat 1) branches can
grow out, while(z~— — 1) branches can grow out from each down-spin. Figure 6 shows a
typical magnetic diluted Cayley tree with three shells f6r= 3 andz~ = 2. The up- and
down-spins are represented by full and open circles respectively. This tree has been grown
from an up-spin.

Let us define some physical and geometrical quantities of interest for the magnetic
Cayley tree. Thegth shell contains a local magé(g) of sites dependent on th&/ and
BH parameters, in obvious contrast to the magnetic Cayley tree model for Wijighwas
a constant for all values of theJ and H parameters. The branching rafigg) of the
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gth shell is defined by
b= VETD
(€]
One should note that it can take non-integer values, in contrast to the Cayley tree case
whereb(g) = z — 1 can take integer values only.

From thegth shell, ((zt* — 1)N*(g) + (z— — 1)N — (g)) bonds emerge. The so-called
chemical activitya(g) of the gth shell is defined as the normalized difference between bonds
coming from up- and down-spins at a givergeneration. The chemical activity of thh
shell is thus given by

_[ET=DN(g) — (=7 =N (g)]
@ =DNT (@) + " = DN~ (@]
One should note that for the magnetic Cayley tree case, the chemical aatiy)tyeduces
simply to thelocal magnetizationu(g) of the gth shell.

(3.1)

a(g) (3.2)

3.2. Physical properties of diluted Cayley trees

Let us consider the behaviour of the local and global magnetization. This can be done by
searching for the fixed point(s) of the growth process.

On a tree, each perimeter site of the growinghell has only one single spin as nearest
neighbour, a spin which is on thg — 1) shell. On each perimeter site, the probability to
glue an up-spin isA + B + 1)/2 if the neighbouring spin is up, and the gluing probability
is (A — B + 1)/2 if the neighbouring spin is down. The probabilities to glue a down-spin
are(B— A+ 1)/2 and(1 — A — B)/2 for down and up neighbouring spins, respectively
[11]. With this set of probabilities, it is easy to show that the local néissn the average
and the local magnetization on the average of two successive shells are related by the
following recursive relations for the local mass:

N(g) N(g)u(g)

N(g+1)=7(z*+z*—2)+ 5 zt—2z7) (3.3)

and the non-normalized magnetization
N
N@Eg+Dug+1 = %[(Z+ +27 —2A+ (2t —z7)B]
N

+%[(Z++Zi —2)B+ (zt —z7)A] (3.4)
Without field, equation (3.4) reduces to

n(g +1) = a(g)tanh(J). (3.5)

For z* = z~, the magnetic Cayley tree case must be recovered. Introducing

uw(g+1) = u(g) = ne into equation (3.4), the fixed poini., is simply found from

a linear relationship and is given by/(1— B) corresponding to the asymptotical behaviour

of the external shell local magnetization of the magnetic Cayley trees (see section 2.2).
However, forzt # z7, introducingu(g + 1) = u(g) = ue into equation (3.4), the

latter becomes a quadratic equatioryig, for which the roots are given by

Moo 7)[(Z++27 —2(B-D+(E"T—2)A

- 2zt —z
H[T+z7 —2B -1+ (" —z)A)P
+4zT =)+ 727 —2A+ (zF —z7)B]YY? (3.6)
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Figure 7. Global magnetizatioi in the (8J, BH) plane of infinite
magnetic diluted Cayley trees grown with = 3 andz~ = 2.

where the upper sigtt) is only relevant for the™ > z~ case and the lower sigr-) only
relevant for thez~ > z* case.

Thus the local magnetizatign(g) tends asymptotically (i.eg — +o0) to be a constant
Weo- This further leads to an asymptotic non-zero global magnetizatiaf the tree given
by fteo-

Moreover, u is independent of the seed sign. This means thapin species is
asymptotically favoured even if the seed belongs to the other spin dp&ajese 7 shows
the global magnetizatioM = u., in the (8J, BH) plane of infinite diluted Cayley trees
grown withz™ = 3 andz~ = 2. The shape of., is topologically similar to that of figure 2.
However, M is markedly finite for alls H = 0 (except for8J = 0). It is remarkable that
for the zero-field case, the magnetization is non-zero. This behaviour is markedly different
from that found in the pure magnetic Cayley tree case.

Without field, equation (3.6) reduces to

foo = & [a(tanhﬂJ) — 1)+ Jo2tanh(8J) — 1)2 + 4tanr(ﬂ1)] 3.7)
wherea is a geometric quantity given by

4 =2
ozt -z
Thus the local magnetization(g) tends to be asymptotically (i.¢. — +o00) a constant
Ueo- This leads to an asymptotic non-zero global magnetizatoof the tree given byu.
Even for the zero-field case, the magnetization is non-zero; this is quite different from the
pure magnetic Cayley tree case.
Figure 8 shows the global magnetizatiai of infinite diluted Cayley trees grown
without field and for different geometric factoss The full and broken curves are drawn
in figure 8 for positive and negatiwe values, respectively. This asymptotic behaviour of
M is markedly different from the asymptotic case of the magnetic Cayley tree shown in
figure 2.

(3.8)

3.3. Finite-size effects of diluted Cayley trees

As in section 2.3, finite-size systems are of interest. Figure 9 shows the global magnetization
M (broken curves) of diluted Cayley trees grown without field and from two different seed
species. The magnetization at generations 4 and 5 is shown. The bold full curve shows
the asymptotic or fixed-point behaviour for these trees with= 3 andz~ = 2. The full

and broken curves are theoretically obtained by iterating equation (3.4) for a positive and
a negative seed, respectively. Large divergences from the fixed point are seen for large
coupling values in the antiferromagnetic and ferromagnetic parts of the graph. For large
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Figure 8. Global magnetizatiorM as a function of8J(8H = 0) of infinite magnetic Cayley
trees grown with different values.
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Figure 9. Global magnetization as a function ofgJ at two stageg = 4 andg = 5 of
growth of magnetic diluted Cayley trees with = 3 andz~ = 2. Two different spin species
are used as seed. The bold curve represents the fixed pointjdggus

coupling values, we find a slow convergencepafy) towardsu.,. This convergence is
still slower when the sign of the seed is different from the sign of the growth-favoured
species by the field. In such cases, the convergengetofvards.., is difficult to observe
because very large trees must be computed. In the case of3 andz~ = 2 (also shown
in figure 9), antiferromagnetic coupling values lead to a slow oscillating convergence of
the orbit of u(g) aroundus. Thus, for small trees and antiferromagnetic coupling values,
it is interesting to note that trees at two successive generations can exhibit rather different
physical M and ) and geometrical (see also the branching ratio below) behaviour.

The chemical activitya(g) and the branching(g) can be simply derived from(g)
or equation (3.4). The asymptotic and the same finite-size behaviour shown in figure 9
are exhibited fora(g) and b(g) in figures 10 and 11, respectively. The bold curve is
the asymptotic behaviour obtained from the combination of equations (3.1) and (3.2) with
equation (3.7). One should note that the chemical activity is strongly seed- and shell-
dependent for finite-size systems.

For diluted Cayley trees, geometrical quantities are also of interest because they are
(BJ, BH)-dependent. From equations (3.1) and (3.3), we can deduce that the asymptotic
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Figure 10. Chemical activity as a function g8J at two stageg = 4 andg = 5 of growth
of magnetic diluted Cayley trees with" = 3 andz~ = 2. Two different spin species are used
as seed. The bold curve represents the asymptotic behaviour derived from the fixed point locus
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Figure 11. Branching ratio as a function ¢fJ at two stageg = 4 andg = 5 of growth for
magnetic diluted Cayley trees witht = 3 andz~ = 2. Two different spin species are used
as seed. The bold curve represents the asymptotic behaviour derived from the fixed point locus
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behaviour of the local mas¥ (g) is exponential, i.e.

N(g.BJ.BH) ~ exp(g. BJ. BH)g] (3.9)

as expected for any hierarchical lattice (see section 2.1). Thus the totalSgasef the
diluted Cayley trees must also I8g/- and 8 H-dependent. Finite-size effects also influence
the geometrical quantityy via the branching(g, 8J, BH). Figure 12 presents the number
of surface sitesv on the average as a function ®§ of two small diluted trees of generation
g = 4 andg = 5 grown without fields H. The seed was here fixed to bd. The geometric
parameters were fixed to he = 3 andz~ = 2. One can see that the number of surface
sites is stronglys J-dependent for a positive coupling.

One should note that fg8J = +o00, two trivial stable fixed points can be derived from
equation (3.5), i.eu = —1 andu = +1. The global magnetization of the tree has the
same spin sign as the seed value. The generated lattice is simply a Cayley tree with the
coordination numbegs'9"°) of the seed species.
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Figure 12. The averaged number of surface sifésas a function ofgJ at two stageg = 4
andg = 5 of growth for magnetic diluted Cayley trees with = 3 andz~ = 2 grown from an
up-spin as seed.
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Figure 13. Global magnetization/ as a function of8J for two growth stageg = 4 andg =5
of simulatedmagnetic diluted Cayley trees with" = 3 andz~ = 2 grown from an up-spin as
seed. The full curves represent the theoretical curves.

3.4. Simulations of diluted Cayley trees

Numerical simulations agree with these predicted behaviours. The magnetization of small
trees withz™ = 3 andz~ = 2 grown without field is shown in figure 13. The full curve

is the theoretical asymptotic magnetization or fixed point (equation (3.7)). Two stages of
the growth ¢ = 4 andg = 5) are shown. The finite-size effects on the magnetization of
figure 9 (see section 3.3) are clearly visible in figure 13.

4. Conclusion

The growth of hierarchical lattices or structures with two or even several kinds of entities
is encountered in nature: polymers, epidemics, fragmentation, etc. The basic characteristic
entities can be thought to be correlated via an internal coupling, and one entity could be
favoured by an external field. At each generation, the growth can be thought to occur
only on all sites of the perimeter or active shell. For such magnetically grown Cayley
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trees, as introduced here, the growth is magnetically controlled only because the tree is
forced to grow with a constant coordination numberin the absence of a field, the global
magnetizationM of infinite trees is found to be zero for all finite coupling values. We
have in particular found in section 2.4 that the kinetic behaviour of the local magnetization
of the shellsu(g) decreases exponentially with the finite-size paramgteSuch kinetic
behaviours are relevant for many natural or laboratory growth processes.

We have found in sections 2.3 and 2.4 that such intrinsic finite-size effects (i.e. the
number of shell generations) strongly control the physical properties of the trees. Finite-
size effects are likely to be relevant for studies of natural or artificial patterns.

A variant of the magnetic Cayley tree model called the magnetic diluted Cayley tree is
also proposed in this paper; two kinds of coordination numbeleged to the states of the
physical entitiesare considered in a hierarchical lattice. Such cases seem very relevant in
studies of polymers, catalytic or nuclear reaction dynamics, epidemics, etc.

Although the magnetic diluted Cayley tree model is a simple quenched model, it presents
new interesting featureBom a statistical physics point of view. Both degrees of freedom
(one geometric and one physical) are intimately related. The growing magnetic diluted
Cayley treeself-organizesits geometry through the physical growth probabilities. The
resulting asymptotic magnetization is seen to be generally non-zero and is independent of
the seed sign. The finite-size effects are also strongly dependent of the various parameters.

The ‘geometrical variables’ (related to sites and bondsy), b(g) as well asS(g) and
the ‘physical variables’ (related to spingj)(g), u(g) anda(g) are strongly dependent on
the physical growth parametergJ and 8H and thegeometrical parameters*, z~ andg.

To put the results into proper perspective for our work, let us mention that the magnetic
Cayley tree and the magnetic diluted Cayley tree can also serve as standard statistical
mechanics models of phylogenetic tree evolution [19].

Further developments in these domains, besides more general coordination number
(random or not) distributions and more general spin states, should concern the statistical
properties of the mass distribution of the spin-clusters in the growing trees, correlation effects
and dynamic properties. Studying the present models by assimilating them to correlated
percolation problems (see the appendix) can lead to some additional information of interest
as well.
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Appendix. Correlated percolation problems

In the bulk of the trees, it seems that the spins tend to aggregate in clusters. It is of interest
to know the growth parameters for which a cluster of the same species spans the tree. If we
consider the paths of the seed-type species from the initiabgite the extremities of the

tree, we recover a correlated percolation problem [20]. One should note that the systems
here are of the quenched type and differ from those studied in the majority of correlated

(annealed) percolation problems. By studying the behaviour of the physical properties at

the percolation threshold, we can get some additional information about the internal (spin)

structure of the tree. Here, we limit our discussion to pure magnetic Cayley trees. The
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percolation problem in magnetic diluted Cayley trees is much more complex and is outside
the scope of this paper.

If we define the percolation threshol@J/*, BH*) as the parameter values for which
just a single cluster of the seed species spans the tree, the probability that a path of
spins grows from the seed to the surface multiplied by the number of branches of the tree
z(z — 1)¢~1 must be equal to unity. It is the condition that there exists just one percolating
path. This gives

BJ* + 0ofH* = In[z"8(z — D¢~ V/x —1] (A1)
for which the r.h.s. tends asymptotically — +oo) to
BJ* + 0ofH* = —3In(z — 2). (A.2)

In the absence of an external field and for a coordination number strictly greater than
three(z > 3), the coupling threshol@ J* is always negative. This means that, even though
the spins tend to alternate, one percolation pattyapins on the infinite latticég — +00)
is possible. The percolation threshold corresponds to the uncorréjatigd= 0) case for
a coordination numbet = 3. Moreover, it was shown in section 2 that in the absence
of an external fieldM tends asymptotically to zero for all finite coupling values. Thus,
the magnetizationV is zero at the threshold for all > 2. This means that the mass of
the spanning or percolating cluster (of magnetizatgh is much smaller than the mass
of the tree (forBH = 0). It is like afilamentary percolation It would be interesting to
observe the blocking of such a percolation and the distribution of substructures just as they
are examined in the screening of species in phylogenetic tree growths [21].

However, in the presence of an external field, the magnetization (equation (2.6)) is
asymptotically non-zero at the threshold and is dependent on the seed sign. The mass of
the spanning cluster here is not negligible in front of the mass of the tree. In this case, the
notion of filamentary percolation can only be used4fhas the opposite sign to that of the
seed, i.e. when the field has an opposite sign to that of the seed. Otherwise, it would be
necessary to calculate the magnetization on the backbone, a calculation which is outside of
the scope of this paper.

References

[1] Hermam H J 1986Phys. Rep136 153
[2] Bunde A, Hermann H J, Margolina A and Staylel E 1985Phys. Rev. Let5 653
[3] Ausloos M and KowalskJ M 1992 Phys. RevB 45 12 830
[4] Xiao R F, Alexande J | D andRosenberger F 1988hys. RevA 38 2447
[5] Eden M 1958Symp. on Information Theory in Biologgd H P Yockey (New York: Pergamon) p 359
[6] Jullien R and Botet R 1983. Phys. A: Math. Genl8 2279
[7] Barker G C and Grimsn M J 1994J. Phys. A: Math. Gern27 653
[8] Meakin P 1993Phys. Rep235 189
[9] Kim J M 1993J. Phys. A: Math. Ger26 L33
[10] Silverman M and Simon M 198Blobile Genetic Elementsd J A Shapiro (Orlando, FL: Academic) p 537
[11] Ausloos M, Vandewalle N and Cloots R 1988rophys. Lett24 629; 1995]. Magn. Magn. Mater1402185
Ausloos M and Vandewalle N 199cta Phys. PolB 27 737
[12] Vandewalle N and Ausloos M 1993iffusion Processes: Experiment, Theory, Simulations (Lecture Notes in
Physics 438kd A Pekalski (Berlin: Springer) pp 283-94
[13] Vandewalle N and Ausloos M 199hys. RevE 51 597
[14] Tomalia D A, Nayls A M and Goddad W A 1990Angew. Chem. Int. Ed. Eng?9 138-75
[15] Harris T E 1963The Theory of Branching Process@erlin: Springer)
[16] Thompsm C J 1972Mathematical Statistical Mechanigdlew York: McMillan) p 116
[17] Eggarte T P 1974Phys. RevB 9 2989



7104 N Vandewalle and M Ausloos

[18] Vandewalle N and Ausloos M 1998hys. RevE 50 R635

[19] Vandewalle N and Ausloos M 1995k Physique5 1011

[20] Wollman D A, Dubsa M A and Zhu Q 1993hys. RevB 48 3713
[21] Vandewalle N and Ausloos M 1998hysica90D 262



