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Growth of Cayley and diluted Cayley trees with two kinds
of entities

N Vandewalle† and M Ausloos‡
SUPRAS, Institut de Physique B5, Université de Lìege, Sart Tilman, B-4000 Liège, Belgium

Received 6 March 1996, in final form 22 April 1996

Abstract. A kinetic growth model derived from the magnetic Eden model is introduced in order
to simulate the growth of hierarchical structures, such as Cayley trees. We only consider the case
where two kinds of entities are competing with each other and can be further subjected to an
external field. The very relevant case in which both kinds of entities have different coordination
numbers is introduced here for the first time, and is called the diluted Cayley tree. Physical and
geometrical properties of the finite and infinite trees are exactly found and simulated. Finite-size
effects are emphasized and illustrated on the global or local magnetization and on the chemical
activity. Asymptotic limits are given in each case. The generated patterns can be related to a
correlated percolation problem briefly discussed in the appendix.

1. Introduction

During the last decade, kinetic growth models have received much attention because of
the natural forms and shapes that their non-equilibrium processes develop [1]. Thus, these
models have possible applications in areas of science such as percolation [2], fracture [3]
or crystal growth [4]. The most simple far from equilibrium growth model is that of Eden
[5] which has led to several variants such as, for example, the ‘Eden model A’ [6]. In this
model, the growth starts from a single particle called the ‘seed’ placed on an arbitrary lattice
site. The growth process consists in selectively sticking a particle on an unoccupied lattice
site in the immediate neighbourhood (the ‘perimeter’) of the cluster. This rule simulates,
for example, the growth of bacteria cell colonies [5–7] and leads to compact clusters filling
the Euclidian space. Variants of this simple rule were introduced to simulate, for example,
sedimentation [8] or directed polymers [9]. Although the process is apparently simple, it is
not yet fully understood [1–9].

Yet the Eden model and its present generalizations are too restrictive, because it is
limited to the growth of a single species. However, natural systems can, by contrast,
present different states. For example, biological entities like bacteria cells, for which the
Eden model was constructed, can in fact present an extra degree of freedom, for example
some gene ofsalmonellacan be ‘on’ or ‘off’ [10].

Thus it is of interest to generalize the kinetic one-species growth models. In statistical
physics, one simple way of representing a set of species is through a magnetic analogy, i.e.
through a ‘spin’ taking a certain set of values. In previous works, we have added the notion
of spin to the well known Eden [11] and DLA [12, 13] models. These ‘generalized’ or
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‘magnetic’ kinetic growth models directly open many paths of investigation in (statistical)
physics [11–13].

The aim of this paper is to present and solve such a magnetic-like growth on a Cayley
tree (or Bethe lattice) and to discuss the physical and geometrical properties of the generated
trees. Moreover, we will consider that both kinds of physical entities are geometrically
different: both entities can, for example, have different but fixed branching coordination
numbers. This ‘condition’ generates what we calldiluted Cayley trees, apparently not
examined up to now. From a more positive point of view, one can consider that the tree
could evolve with multiple branching. This more general case of tree growth is discussed
and is exactly solved here. Another generalization could consider a random value of the
branching parameter at each growth step.

Such multi-species growths on hierarchical structures are not so marginal as might be
thought at first: for example, bacteria cell colonies [10], dendrimers [14] and demographic
problems [15] are addressed. The aim of this paper is not to pursue an exhaustive
list of possible experimental relevant cases, but rather to develop statistical mechanics
investigations on a new model and see whether interesting findings exist. The models
presented here are clearly of theoretical interest because they can be connected to a correlated
percolation which is a standard subject of investigation. A brief discussion of the correlated
percolation problem on a Cayley tree is given in an appendix.

Furthermore, mathematical theory and formal examples of simple branching processes
can be found in [15]. We will keep the ‘magnetic picture and vocabulary’ throughout the
text because it is more traditional for Cayley trees.

In section 2, the Cayley tree model with fixed branching is presented and an exact
solution is given for physical and geometrical quantities. These exact results are compared
to simulation data. In section 3, we discuss the second model which generates diluted
Cayley trees. Some conclusions are drawn in section 4. New interesting features are
outlined, allowing for some thought as possible parameter control applications.

2. Growth of magnetic Cayley trees

2.1. The growth model

We recall first that a Cayley tree is a hierarchical lattice without loops with an asymptotically
infinite dimension. Cayley trees are generated as follows. From a central site,z branches
of unit length grow. The end of each branch is another growth site. At this step, a shell is
formed by thez new sites; from each site of the first shell,z − 1 branches then grow out:
the second shell is defined by the newly formed sites and this new shell containsz(z − 1)

sites. The process is then repeated. The parameterz is called the coordination number of
the lattice. Forz = 2, the tree reduces to a one-dimensional chain. Figure 1(a) shows three
shells of a Cayley tree with a coordination numberz = 3.

Consider now the growth of a Cayley tree when two possible Ising(S = 1
2)-like types

of entities can be deposited on the growth sites. Initially, a spinσ0 (up or down) is dropped
on the central site of the Cayley tree. It is the initiator of the growth and is also called
the seed of the growth. Spins are then glued to each site of the first shell according to an
a priori rule: the probabilities to glue an up-spin or to glue a down-spin are given by the
Boltzmann factor exp(−β1E) of the local gain of energy1E resulting from the addition
of either type of spin. On each site, both probabilities are renormalized in the interval [0,1]
over both up or down directions of the new spin. For eachz-site of the first shell, a random
number generator chooses a spin species with respect to the calculated probabilities. The



Growth of Cayley and diluted Cayley trees 7091

Figure 1. (a) Cayley tree of the third generation grown withz = 3. (b) Typical magnetic Cayley
tree withz = 3 obtained by the model defined in section 2. Full and open circles represent up-
and down-spins, respectively.

spins are frozen for ever and define a new spin-free perimeter, i.e. the set of empty sites in
contact with the tree. This set forms the next shell, on which growth can take place in the
same way. The process is repeated as many asg times.

The total energyE of a magnetic tree is obviously given by

E = −J

2

∑
〈i,j〉

σiσj − H
∑

i

σi (2.1)

where the first summation occurs on the nearest-neighbour spins only. The first term
describes a short-range interaction with couplingJ between nearest-neighbour ‘spins’. For
a positive coupling, spins of the same species tend to aggregate in the tree while for a
negative coupling, they tend to alternate. The second term in (2.1) defines a dimensionless
field-like quantity for the orientation of the spins as if a ‘magnetic field’ is applied. The
potential βH can indeed represent at first an external magnetic field, but can also be a
chemical potential, a pressure field, etc. AlthoughJ andH are energies, the process is only
of kinetic and geometric origin because the growth is driven by the probabilities exp(βJ )

and exp(βH), as we will see more explicitly below (section 2.2).
Such a process can be easily computed. Figure 1(b) shows a typical ‘magnetic’ Cayley

tree with three shells, a tree which has grown from an up-spin as seed. Up- and down-spins
are represented by full and open circles, respectively.

Here, at each generation, the growth occurs on all sites of the perimeter. Thus the
kinetic growth model described above is anisotropic variant of the magnetic Eden model
[11] which was built on a square lattice. Inclusion of a degree of freedom modelled by a
spin permits one to study the distribution of ‘spins’ in the generated patterns, and therefore
allows one to introduce physical quantities of interest, such as ‘magnetization’, and finally
to merge a geometric model into a physical model and vice versa. Other physical quantities,
such as correlation functions, susceptibility etc, are not studied here, but could receive some
attention as well.
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2.2. Physical and geometrical properties of the growing trees

At the gth generation of the tree,z(z − 1)g−1 spins are glued on the(g − 1)th shell. The
whole tree contains a ‘mass’S(g) of spins given by

S(g) = z(z − 1)g − 2

z − 2
. (2.2)

The shell of thegth generation contains a numberN(g) of sites. For such trees,
N(g) = z(z − 1)g−1 grows exponentially withg and is only dependent onz. N(g) is also
the number of paths that a self-avoiding random walker can follow to reach the external
shell or the surface sites.

The tree may also be considered as a collection ofz(z − 1)g−1 independent semi-open
chains starting from the central site. The stochastic growth is similar to that used in the
magnetic Eden model first studied on a square lattice [11]. For a one dimensional semi-open
chain, it can be found that the probabilistic averageσg of a spin at a distanceg from the
seedσ0 is exactly given by

σg = A

(
1 − Bg

1 − B

)
+ σ0B

g (2.3)

where the variablesA andB are given by

A = tanh(βJ + βH) − tanh(βJ − βH)

2
(2.4a)

and

B = tanh(βJ + βH) + tanh(βJ − βH)

2
. (2.4b)

The magnetic (spin) analogy allows us to define physical quantities. Theglobal
‘magnetization’M of a tree ofg shells is defined as the difference between the number of
up- and down-spins normalized by the tree massS(g). The magnetizationM is also the
normalized summation ofσi over all successive shells.M for a finite tree is given by

M = 1

S(g)

(
σ0 +

g∑
i=1

z(z − 1)i−1σi

)
. (2.5)

Inserting equations (2.2) and (2.3) into equation (2.5), we obtain

M = (z − 2)

(z(z − 1)g − 2)

[
σ0 + zA

1 − B

(
(z − 1)g − 1

z − 2

)
+ zB

(
1 − ((z − 1)B)g

1 − (z − 1)B

)(
σ0 − A

1B

)]
.

(2.6)

It is clear that this magnetization is not the equilibrium magnetization defined by the
extremum of the free energy with respect to the fieldH . Here the magnetization does
not minimize the free energy. The result of equation (2.6) holds for a non-equilibrium or
‘quenched’ system and is different from the mere annealed finite-size Ising case [16, 17].

In the presence of an external field,M tends asymptotically toA/(1−B) independently
of σ0 and z. Figure 2 shows this asymptotic (forg → +∞) behaviour ofM in the plane
(βJ, βH). The magnetizationM is asymptotically finite forβH 6= 0 and is only controlled
by the sign of the field. Without the field(βH = 0), one should note that the asymptotic
magnetizationM tends to zero for all finite coupling values. One can notice an intermediate
plateau around zero in the antiferromagnetic part of the(βJ, βH) plane of figure 2. In this
region (i.e. forβH < βJ ), the antiferromagnetic coupling dominates the field and alternating
configurations of spins are favoured, leading to a global zero magnetization forg → +∞.
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Figure 2. Asymptotic behaviour of the global magnetization of
magnetic Cayley trees in the(βJ, βH) plane.

The local magnetizationµ(g) of the gth shell is defined by the difference between the
numberN+ of up- and the numberN− of down-spins in thegth shell normalized by the
massz(z − 1)g−1 of this shell. In the magnetic Cayley tree,µ(g) = σg whereσg is given
by equation (2.3). It is worth pointing out thatµ(g) tends asymptotically toA/(1 − B)

(which is the quantity just discussed above) for finiteβJ andβH values.
One should also remark that in kinetic growth models, when the geometry is intimately

related to the physical growth process, interesting behaviours are generally found. This
was the case, for example, of DLA or invasion percolation, in which fractal structures can
be found [1, 13]. Here, the generated patterns are non-fractal by the definition of a tree
(see section 2.1) but if we pay attention to the respective distribution of the spin species
in the tree (see the appendix), filamentary clusters of spins are found for well-defined
parameter(βJ, βH) values. This suggests that the internal structures of such trees are also
interesting. The scope of this paper is, however, restricted to solving the global and surface
spin composition of the trees.

2.3. Finite-size effect of trees grown in the presence of an external field

One is often interested in finite-size systems. Indeed, one should note that natural and
physico-chemical systems have a finite size and only contain a few entities. Even though
they are macroscopic systems, bacteria cell colonies contain no more than 10 000 cells
[10]. Dendrimers, related macromolecules and nanocrystals are usually made of no more
than ten generations or shells [14]. Therefore, it is useful to stress the size effect of the
present growth model. This is done by comparing values for small trees (finiteg) with the
asymptotic values (figure 2).

Figure 3. (a) Global magnetizationM of small-size Cayley trees (fifth generation) withz = 3
grown from an up-spin as seed in the(βJ, βH) plane. (b) Surface magnetizationµ(5) of the
same trees.



7094 N Vandewalle and M Ausloos

Figure 4. Global magnetizationM as a function ofβJ for Cayley trees(z = 3) grown without
external field from an up-spin as seed. Different stages of the growth are shown(g = 4, 5, 6).
One should note the varying sign ofM with g at fixed coupling.

Figure 3(a) shows the magnetizationM in the (βJ, βH) plane of small trees
(z = 3, g = 5) grown from an up-spin as seed. One should note thatM is non-zero in
the antiferromagnetic part of the diagram. In fact, introducingz = 3, g = 5 andβJ = −∞
into equation (2.6), we find thatM = − 32

94 ≈ −0.3404 for anyβH value. Moreover, it
should be stressed that (i) in thisβJ < 0 part of the diagram,M is a damped oscillating
function of the size parameterg and converging towards zero (see equation (2.6)), and (ii)
the amplitude of these oscillations isz-dependent. This damped oscillating behaviour is
illustrated in figure 4 for the particular caseβH = 0 (see the next subsection).

In the ferromagnetic part of the(βJ, βH) plane, another finite-size effect is seen in
the negative field region. It is essentially aseed effect. For a tree having grown from an
up-spin, a strong coupling leads to all the spins being ordered in the same spin direction
as that of the seed via nearest-neighbour interactions. When the field is dominated by the
coupling, the sign of the global magnetizationM is controlled by the seed sign, even though
the field has a different sign.

Figure 3(b) shows the fifth shell local magnetizationµ(5) of the same tree as those used
for the globalM magnetization shown in figure 3(a). Similar finite-size (oscillation and
seed) effects occurbut arez-independentas seen in equation (2.3). The spin composition
of the external shell is thus strongly dependent on the initial seedand the generationg of
the tree. In this sense, there are ‘intrinsic finite-size effects’. Within this set of parameters,
the global distribution of spin species is tunable. This opens new interesting prospects in
various sciences.

2.4. Small trees grown in the absence of an external field

The variableA, defined in equation (2.2), characterizes the field effect:A reduces to zero
without field and equation (2.6) then reduces to

M = (z − 2)σ0

(z(z − 1)g − 2)

[
1 + z tanh(βJ )

(
1 − ((z − 1) tanh(βJ ))g

1 − (z − 1) tanh(βJ )

)]
. (2.7)

The zero-field case occurs when the growth process is controlled only by the local
interactions.
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Figure 4 shows the total magnetizationM as a function ofβJ for a finite Cayley tree
(z = 3) grown without field from an up-spin as seed at different stages in its growth:
g = 3, 4 and 5 (with massS = 22, 46 and 766, respectively).

As similarly observed in the two-dimensional magnetic Eden model [18], the
magnetization presents a smooth size-dependent ‘transition’ from 0 to 1 when the coupling
βJ > 0 is increased from 0 to a high value. As discussed in section 2.3, this transition
is here also due to aseed memory effect. One should note (but it is not shown) that if
the seed is ‘down’,M tends to−1 at large ferromagnetic coupling values because of the
factor σ0 appearing in equation (2.7). This means that above a sufficiently adequate (or
‘critical’) coupling value, the spin species of the seed itself dominates the other species.
One can define the critical coupling valueβJc as the inflexion point of theM curve
by analogy with values derived from mean-field approximations in statistical mechanics.
Taking the second derivative of equation (2.7) set to zero, one finds the valueβJc, which
diverges logarithmically withg. From equation (2.2), a variable changeg(S) leads to
βJc ∼ ln(ln(S)). Thus, for large trees, a very large value ofβJ is needed to obtain a
non-zero magnetization for the system. This is in contrast to the behaviour observed in the
MEM on the square lattice [18], where the critical value was found to grow logarithmically
with the number of spins, i.e.βJc ∼ ln(S).

In the absence of an external field, the competition between the two species in the
finite-size Cayley tree is thus strictly controlled by the seedσ0 and the generation of the
tree. Finally, notice thatg � 1 and for large coupling values,M(g) has the following
behaviour:

M ∼ σ0(tanh(βJ ))g+1. (2.8)

For large positive coupling values, the dynamical behaviour ofM(g) is thus simply given
by an exponential depending on the numberg of generations. One should also note that
the same exponential behaviour forµ(g) can be found from equation (2.2).

In the antiferromagnetic part(βJ < 0), a slow oscillating convergence ofM(g) towards
zero can also be seen. The discussion of the latter observation is identical to the one already
made in section 2.3. The effect of the parity ofg is also clearly seen here.

2.5. Simulations of Cayley trees

The global magnetizationM of the resulting trees up to five shells grownwithout field and
from an up-spin as seed is shown in figure 5. Each symbol represents the average of the
magnetization over 100 simulated Cayley trees. Different coordination numbers have been
used: z = 3, 4 and 5 for respectively square, triangle and circle symbols in figure 5. The
full curves represent the theoretical curve given by equation (2.7). The global magnetization
M of the simulated trees fits perfectly the theoretical curves.

3. Diluted Cayley trees

3.1. The growth model

In many cases, the examined species can have different ‘coordination numbers’ according
to their state. Hence different coordination numbersz+ and z− for example, for a two
state system, can be introduced. The totalM should be strongly dependent on these
parameters. Surprisingly, such an apparently simple tree model has not yet been studied
to our knowledge. An example of multi-species growth is the evolution (catalysis) or
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Figure 5. Global magnetizationM of small Cayley trees(g = 5) grown from an up-spin as
seed. Different coordination numbers are used. The measurements ofM are averaged over 100
simulated trees; curves are theoretical values from equation (2.7).

Figure 6. Typical magnetic diluted Cayley tree grown forz+ = 3 andz− = 2 up to the third
generation. Full and open circles represent up- and down-spins, respectively.

reproduction (biological) processes where different filiation types can occur depending on
the physical state of the entities.

The magnetic diluted Cayley tree model is introduced here for taking into account such
a multi-species growth as an extension of the magnetic Cayley tree model (section 2). At
each generation of the growth, from each up-spin, we assume that(z+ − 1) branches can
grow out, while(z− − 1) branches can grow out from each down-spin. Figure 6 shows a
typical magnetic diluted Cayley tree with three shells forz+ = 3 andz− = 2. The up- and
down-spins are represented by full and open circles respectively. This tree has been grown
from an up-spin.

Let us define some physical and geometrical quantities of interest for the magnetic
Cayley tree. Thegth shell contains a local massN(g) of sites dependent on theβJ and
βH parameters, in obvious contrast to the magnetic Cayley tree model for whichN(g) was
a constant for all values of theβJ and βH parameters. The branching ratiob(g) of the
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gth shell is defined by

b(g) = N(g + 1)

N(g)
. (3.1)

One should note that it can take non-integer values, in contrast to the Cayley tree case
whereb(g) = z − 1 can take integer values only.

From thegth shell,((z+ − 1)N+(g) + (z− − 1)N − (g)) bonds emerge. The so-called
chemical activitya(g) of thegth shell is defined as the normalized difference between bonds
coming from up- and down-spins at a giveng generation. The chemical activity of thegth
shell is thus given by

a(g) = [(z+ − 1)N+(g) − (z− − 1)N−(g)]

[(z+ − 1)N+(g) + (z− − 1)N−(g)]
. (3.2)

One should note that for the magnetic Cayley tree case, the chemical activitya(g) reduces
simply to thelocal magnetizationµ(g) of the gth shell.

3.2. Physical properties of diluted Cayley trees

Let us consider the behaviour of the local and global magnetization. This can be done by
searching for the fixed point(s) of the growth process.

On a tree, each perimeter site of the growingg shell has only one single spin as nearest
neighbour, a spin which is on the(g − 1) shell. On each perimeter site, the probability to
glue an up-spin is(A + B + 1)/2 if the neighbouring spin is up, and the gluing probability
is (A − B + 1)/2 if the neighbouring spin is down. The probabilities to glue a down-spin
are (B − A + 1)/2 and(1 − A − B)/2 for down and up neighbouring spins, respectively
[11]. With this set of probabilities, it is easy to show that the local massN on the average
and the local magnetizationµ on the average of two successive shells are related by the
following recursive relations for the local mass:

N(g + 1) = N(g)

2
(z+ + z− − 2) + N(g)µ(g)

2
(z+ − z−) (3.3)

and the non-normalized magnetization

N(g + 1)µ(g + 1) = N(g)

2
[(z+ + z− − 2)A + (z+ − z−)B]

+N(g)µ(g)

2
[(z+ + z− − 2)B + (z+ − z−)A]. (3.4)

Without field, equation (3.4) reduces to

µ(g + 1) = a(g) tanh(βJ ). (3.5)

For z+ = z−, the magnetic Cayley tree case must be recovered. Introducing
µ(g + 1) = µ(g) = µ∞ into equation (3.4), the fixed pointµ∞ is simply found from
a linear relationship and is given byA/(1−B) corresponding to the asymptotical behaviour
of the external shell local magnetization of the magnetic Cayley trees (see section 2.2).

However, forz+ 6= z−, introducingµ(g + 1) = µ(g) = µ∞ into equation (3.4), the
latter becomes a quadratic equation inµ∞ for which the roots are given by

µ∞ = 1

2(z+ − z−)
[(z+ + z− − 2)(B − 1) + (z+ − z−)A

±{[(z+ + z− − 2)(B − 1) + (z+ − z−)A]2

+4(z+ − z−)[(z+ + z− − 2)A + (z+ − z−)B]}1/2] (3.6)
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Figure 7. Global magnetizationM in the(βJ, βH) plane of infinite
magnetic diluted Cayley trees grown withz+ = 3 andz− = 2.

where the upper sign(+) is only relevant for thez+ > z− case and the lower sign(−) only
relevant for thez− > z+ case.

Thus the local magnetizationµ(g) tends asymptotically (i.e.g → +∞) to be a constant
µ∞. This further leads to an asymptotic non-zero global magnetizationM of the tree given
by µ∞.

Moreover, µ∞ is independent of the seed sign. This means thata spin species is
asymptotically favoured even if the seed belongs to the other spin species! Figure 7 shows
the global magnetizationM = µ∞ in the (βJ, βH) plane of infinite diluted Cayley trees
grown withz+ = 3 andz− = 2. The shape ofµ∞ is topologically similar to that of figure 2.
However,M is markedly finite for allβH = 0 (except forβJ = 0). It is remarkable that
for the zero-field case, the magnetization is non-zero. This behaviour is markedly different
from that found in the pure magnetic Cayley tree case.

Without field, equation (3.6) reduces to

µ∞ = 1
2

[
α(tanh(βJ ) − 1) ±

√
α2(tanh(βJ ) − 1)2 + 4 tanh(βJ )

]
(3.7)

whereα is a geometric quantity given by

α = z+ + z− − 2

z+ − z− . (3.8)

Thus the local magnetizationµ(g) tends to be asymptotically (i.e.g → +∞) a constant
µ∞. This leads to an asymptotic non-zero global magnetizationM of the tree given byµ∞.
Even for the zero-field case, the magnetization is non-zero; this is quite different from the
pure magnetic Cayley tree case.

Figure 8 shows the global magnetizationM of infinite diluted Cayley trees grown
without field and for different geometric factorsα. The full and broken curves are drawn
in figure 8 for positive and negativeα values, respectively. This asymptotic behaviour of
M is markedly different from the asymptotic case of the magnetic Cayley tree shown in
figure 2.

3.3. Finite-size effects of diluted Cayley trees

As in section 2.3, finite-size systems are of interest. Figure 9 shows the global magnetization
M (broken curves) of diluted Cayley trees grown without field and from two different seed
species. The magnetization at generations 4 and 5 is shown. The bold full curve shows
the asymptotic or fixed-point behaviour for these trees withz+ = 3 andz− = 2. The full
and broken curves are theoretically obtained by iterating equation (3.4) for a positive and
a negative seed, respectively. Large divergences from the fixed point are seen for large
coupling values in the antiferromagnetic and ferromagnetic parts of the graph. For large
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Figure 8. Global magnetizationM as a function ofβJ (βH = 0) of infinite magnetic Cayley
trees grown with differentα values.

Figure 9. Global magnetizationM as a function ofβJ at two stagesg = 4 andg = 5 of
growth of magnetic diluted Cayley trees withz+ = 3 andz− = 2. Two different spin species
are used as seed. The bold curve represents the fixed point locusµ∞.

coupling values, we find a slow convergence ofµ(g) towardsµ∞. This convergence is
still slower when the sign of the seed is different from the sign of the growth-favoured
species by the field. In such cases, the convergence ofµ towardsµ∞ is difficult to observe
because very large trees must be computed. In the case ofz+ = 3 andz− = 2 (also shown
in figure 9), antiferromagnetic coupling values lead to a slow oscillating convergence of
the orbit ofµ(g) aroundµ∞. Thus, for small trees and antiferromagnetic coupling values,
it is interesting to note that trees at two successive generations can exhibit rather different
physical (M andµ) and geometrical (see also the branching ratio below) behaviour.

The chemical activitya(g) and the branchingb(g) can be simply derived fromµ(g)

or equation (3.4). The asymptotic and the same finite-size behaviour shown in figure 9
are exhibited fora(g) and b(g) in figures 10 and 11, respectively. The bold curve is
the asymptotic behaviour obtained from the combination of equations (3.1) and (3.2) with
equation (3.7). One should note that the chemical activity is strongly seed- and shell-
dependent for finite-size systems.

For diluted Cayley trees, geometrical quantities are also of interest because they are
(βJ, βH)-dependent. From equations (3.1) and (3.3), we can deduce that the asymptotic
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Figure 10. Chemical activity as a function ofβJ at two stagesg = 4 andg = 5 of growth
of magnetic diluted Cayley trees withz+ = 3 andz− = 2. Two different spin species are used
as seed. The bold curve represents the asymptotic behaviour derived from the fixed point locus
µ∞.

Figure 11. Branching ratio as a function ofβJ at two stagesg = 4 andg = 5 of growth for
magnetic diluted Cayley trees withz+ = 3 andz− = 2. Two different spin species are used
as seed. The bold curve represents the asymptotic behaviour derived from the fixed point locus
µ∞.

behaviour of the local massN(g) is exponential, i.e.

N(g, βJ, βH) ∼ exp[b(g, βJ, βH)g] (3.9)

as expected for any hierarchical lattice (see section 2.1). Thus the total massS(g) of the
diluted Cayley trees must also beβJ - andβH -dependent. Finite-size effects also influence
the geometrical quantityN via the branchingb(g, βJ, βH). Figure 12 presents the number
of surface sitesN on the average as a function ofβJ of two small diluted trees of generation
g = 4 andg = 5 grown without fieldβH . The seed was here fixed to be+1. The geometric
parameters were fixed to bez+ = 3 andz− = 2. One can see that the number of surface
sites is stronglyβJ -dependent for a positive coupling.

One should note that forβJ = +∞, two trivial stable fixed points can be derived from
equation (3.5), i.e.µ = −1 andµ = +1. The global magnetization of the tree has the
same spin sign as the seed value. The generated lattice is simply a Cayley tree with the
coordination numberzsign(σ0) of the seed species.
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Figure 12. The averaged number of surface sitesN as a function ofβJ at two stagesg = 4
andg = 5 of growth for magnetic diluted Cayley trees withz+ = 3 andz− = 2 grown from an
up-spin as seed.

Figure 13. Global magnetizationM as a function ofβJ for two growth stagesg = 4 andg = 5
of simulatedmagnetic diluted Cayley trees withz+ = 3 andz− = 2 grown from an up-spin as
seed. The full curves represent the theoretical curves.

3.4. Simulations of diluted Cayley trees

Numerical simulations agree with these predicted behaviours. The magnetization of small
trees withz+ = 3 andz− = 2 grown without field is shown in figure 13. The full curve
is the theoretical asymptotic magnetization or fixed point (equation (3.7)). Two stages of
the growth (g = 4 andg = 5) are shown. The finite-size effects on the magnetization of
figure 9 (see section 3.3) are clearly visible in figure 13.

4. Conclusion

The growth of hierarchical lattices or structures with two or even several kinds of entities
is encountered in nature: polymers, epidemics, fragmentation, etc. The basic characteristic
entities can be thought to be correlated via an internal coupling, and one entity could be
favoured by an external field. At each generation, the growth can be thought to occur
only on all sites of the perimeter or active shell. For such magnetically grown Cayley
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trees, as introduced here, the growth is magnetically controlled only because the tree is
forced to grow with a constant coordination numberz. In the absence of a field, the global
magnetizationM of infinite trees is found to be zero for all finite coupling values. We
have in particular found in section 2.4 that the kinetic behaviour of the local magnetization
of the shellsµ(g) decreases exponentially with the finite-size parameterg. Such kinetic
behaviours are relevant for many natural or laboratory growth processes.

We have found in sections 2.3 and 2.4 that such intrinsic finite-size effects (i.e. the
number of shell generations) strongly control the physical properties of the trees. Finite-
size effects are likely to be relevant for studies of natural or artificial patterns.

A variant of the magnetic Cayley tree model called the magnetic diluted Cayley tree is
also proposed in this paper; two kinds of coordination numbersrelated to the states of the
physical entitiesare considered in a hierarchical lattice. Such cases seem very relevant in
studies of polymers, catalytic or nuclear reaction dynamics, epidemics, etc.

Although the magnetic diluted Cayley tree model is a simple quenched model, it presents
new interesting featuresfrom a statistical physics point of view. Both degrees of freedom
(one geometric and one physical) are intimately related. The growing magnetic diluted
Cayley treeself-organizesits geometry through the physical growth probabilities. The
resulting asymptotic magnetization is seen to be generally non-zero and is independent of
the seed sign. The finite-size effects are also strongly dependent of the various parameters.

The ‘geometrical variables’ (related to sites and bonds)N(g), b(g) as well asS(g) and
the ‘physical variables’ (related to spins)M(g), µ(g) anda(g) are strongly dependent on
the physical growth parametersβJ andβH and thegeometrical parametersz+, z− andg.

To put the results into proper perspective for our work, let us mention that the magnetic
Cayley tree and the magnetic diluted Cayley tree can also serve as standard statistical
mechanics models of phylogenetic tree evolution [19].

Further developments in these domains, besides more general coordination numberz

(random or not) distributions and more general spin states, should concern the statistical
properties of the mass distribution of the spin-clusters in the growing trees, correlation effects
and dynamic properties. Studying the present models by assimilating them to correlated
percolation problems (see the appendix) can lead to some additional information of interest
as well.
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Appendix. Correlated percolation problems

In the bulk of the trees, it seems that the spins tend to aggregate in clusters. It is of interest
to know the growth parameters for which a cluster of the same species spans the tree. If we
consider the paths of the seed-type species from the initial siteσ0 to the extremities of the
tree, we recover a correlated percolation problem [20]. One should note that the systems
here are of the quenched type and differ from those studied in the majority of correlated
(annealed) percolation problems. By studying the behaviour of the physical properties at
the percolation threshold, we can get some additional information about the internal (spin)
structure of the tree. Here, we limit our discussion to pure magnetic Cayley trees. The
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percolation problem in magnetic diluted Cayley trees is much more complex and is outside
the scope of this paper.

If we define the percolation threshold(βJ ∗, βH ∗) as the parameter values for which
just a single cluster of the seed species spans the tree, the probability that a path ofg

spins grows from the seed to the surface multiplied by the number of branches of the tree
z(z − 1)g−1 must be equal to unity. It is the condition that there exists just one percolating
path. This gives

βJ ∗ + σ0βH ∗ = 1
2 ln[z1/g(z − 1)(g−1)/g − 1] (A.1)

for which the r.h.s. tends asymptotically(g → +∞) to

βJ ∗ + σ0βH ∗ = − 1
2 ln(z − 2). (A.2)

In the absence of an external field and for a coordination number strictly greater than
three(z > 3), the coupling thresholdβJ ∗ is always negative. This means that, even though
the spins tend to alternate, one percolation path ofσ0 spins on the infinite lattice(g → +∞)

is possible. The percolation threshold corresponds to the uncorrelated(βJ ∗ = 0) case for
a coordination numberz = 3. Moreover, it was shown in section 2 that in the absence
of an external field,M tends asymptotically to zero for all finite coupling values. Thus,
the magnetizationM is zero at the threshold for allz > 2. This means that the mass of
the spanning or percolating cluster (of magnetizationσ0) is much smaller than the mass
of the tree (forβH = 0). It is like a filamentary percolation. It would be interesting to
observe the blocking of such a percolation and the distribution of substructures just as they
are examined in the screening of species in phylogenetic tree growths [21].

However, in the presence of an external field, the magnetization (equation (2.6)) is
asymptotically non-zero at the threshold and is dependent on the seed sign. The mass of
the spanning cluster here is not negligible in front of the mass of the tree. In this case, the
notion of filamentary percolation can only be used ifM has the opposite sign to that of the
seed, i.e. when the field has an opposite sign to that of the seed. Otherwise, it would be
necessary to calculate the magnetization on the backbone, a calculation which is outside of
the scope of this paper.
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